<b></b>对于他这种将一辈子都奉献给了物理,已经半截身子入土的人来说,没有什么比看到物理领域后继有人更让人高兴了。
办公室中,徐川陷入了沉思中。
他顺着的戴维·格罗斯教授的指点继续往下思考。
对于格罗斯教授说的‘夸克的渐进自由现象’和‘夸克禁闭’这两个领域他很清楚。
这两个都是粒子物理领域的知识。
前者是面前这位老人获得诺奖的成果。
它是一种反直觉的神奇物理现象。
简而言之,它的核心在于,原子核的核力在很短的距离里会减弱,从而可以让原子核中的夸克表现得像自由粒子。但当原子核中的两颗夸克的距离拉大后,束缚它们的吸引力反而变大了。
这种特性可以比喻为一种橡皮圈,橡皮圈拉得越长,反弹的力量就会越大,但当你不拉它的话,它就松松垮垮的。
这就是‘夸克的渐进自由现象’,它可以通过粒子物理学中的深度非线性散射的截面dgp方程来进行摄动计算,因而衍生出了‘量子色动力学’这门学科。
2004年,戴维·格罗斯、戴维·波利策和弗兰克·维尔切克三位物理学家也因此而获得当年的诺奖。
而‘夸克禁闭’,同样也是一种物理现象。
描述的是夸克粒子不会单独存在。
我们都知道,夸克是构成物质的基本单元。
夸克互相结合,能形成一种复合粒子,叫‘强子’。
比如强子中最稳定的粒子是‘质子’和‘中子’,它们是构成原子核的基础单元。
由于强相互作用力的存在,带色荷的夸克被限制和其他夸克在一起,使得总色荷为零。
而夸克之间的作用力随着距离的增加而增加,因此而不能发现单独存在的夸克。
简单的来说,因为强相互作用力,夸克无法像‘质子’或者‘中子’一样一个个的零散存在。
它总是成双成对,或者抱团取暖的。
比如质子,就是由两个上夸克和一个下夸克通过胶子在强相互作用下构成的。
又或者去年通过h发现的五夸克粒子的等等。
只是,这两个理论,和利用数学来缩小希格斯与第三代重夸克的汤川耦合的最理想搜索衰变通道有什么关系吗?
从理论上来说,这三者可以说是三个完全不同的东西。
哪怕徐川站在二十年后的物理界角度来看,这三者也扯不上什么太大的关联。
若硬要说有关系,那就是由‘夸克的渐进自由现象’衍生出来的‘量子色动力学’,在研究强相互作用力方面有一定的关系。
但这方面的东西似乎也应用不到寻找希格斯与第三代重夸克的汤川耦合的最理想搜索衰变通道上来。
不过一位诺奖级的学者很显然不可能无的放失,既然格罗斯教授提示从‘夸克的渐进自由现象’和‘夸克禁闭’方向去研究,那么这里面肯定隐藏了一些东西。
这些东西肯定可以应用到寻找希格斯与第三代重夸克的汤川耦合的最理想搜索衰变通道上。
只是他没有见过。
物理很大,大到即便是他是一名从二十年后重生回来的顶级物理学家,也不可能熟知每一个知识点。
当然,更大的可能是,这仅仅只是戴维·格罗斯教授这两天脑海中才诞生的一个想法。
这就好比生物的进化一样,如果没有外界的刺激,生物也不可能基因突变进而进化。
正常的物理学家压根就不会研究这方面的东西。
如果没有他昨天发给这位教授的邮件,这位老人估计也不会在脑海中思索这种问题。
因意外而诞生出来的想法,没有在未来流传下去再正常不过了。
对于这方面的东西,徐川也没有纠结,他在思索着如何从‘夸克的渐进自由现象’和‘夸克禁闭’方向去研究最理想搜索衰变通道。
办公桌对面的老人很显然在这方面有一些想法,但他并没有直接明说,而是给了一个提示。
这应该是这个老人的一个考验,想看看他在物理上的天赋,或者能力。
即便是最终他思索不出来什么结果,对方应该也会将完整的思路告诉他。
但徐川不可能就这样放弃自己的独立思考,在已经有了一条线索的情况下,如果他还做不到的话,他就不配站在物理界的顶峰了。
脑海中的各种知识被迅速翻动,从‘夸克的渐进自由现象’开始,到量子色动力学、从‘夸克禁闭’,到最低能量的状态的真空激发
一连串的知识点迅速在徐川脑海中构建成一条曲折却连接线索。
蓦的,他似乎想起了什么,勐地抬起了头,眼神熠熠的盯着办公桌对面的老人。
“横向动量分布的软胶子重求和效应?”
闻言,戴维·格罗斯教授露出了惊讶的目光,讶异的问道“你是怎么想到这上面去的?”
他没想到眼前的这个少年居然能在这么短的时间内就能找到突破点。
他昨天下午收到邮件后思考了一晚上,利用这些年在接触过的无数的对撞实验与分析数据才找出来一条似乎可行的道路,花费的时间不低于五六个小时。
没想到这会徐川仅仅是思考了不到五分钟的时间,就找到了这条隐秘的交错点。
虽说有他的提示在先,但是这也太不可思议了。
横向动量分布的软胶子重求和效应在当今的物理学界可以说是最前沿最冷门的领域了。
这一领域是用来计算处理粒子的初态与末态之间色干涉效应的。
但在如今的物理界,对撞机都还在寻找新粒子和验算的标准模型是否正确,又怎会有人将注意力投放到色态干涉效应上去?
对这一块有所了解的,整个物理界都可以数得过来。